APPROXIMATION OF ITERATIVE METHODS FOR ALTERING POINTS PROBLEM WITH APPLICATIONS
نویسندگان
چکیده
In this paper, we consider and investigate an altering points problem involving generalized accretive mappings over closed convex subsets of a real uniformly smooth Banach space. Parallel Mann parallel S-iterative methods are suggested to analyze the approximate solution problem. Consequently, some systems variational inclusions inequalities also explored using conceptual framework points. Convergence iterative verified by illustrative numerical example.
منابع مشابه
Iterative Methods for Approximation of Fixed Points and Their Applications
In this article, we deal with iterative methods for approximation of fixed points and their applications. We first discuss fixed point theorems for a nonexpansive mapping or a family of nonexpansive mappings. In particular, we state a fixed point theorem which answered affirmatively a problem posed during the Conference on Fixed Point Theory and Applications held at CIRM, Marseille-Luminy, 1989...
متن کاملConvergence theorems of iterative approximation for finding zeros of accretive operator and fixed points problems
In this paper we propose and studied a new composite iterative scheme with certain control con-ditions for viscosity approximation for a zero of accretive operator and xed points problems in areflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequencefxng dened by the new introduced iterative sequence is proved. The main results improve andcomplement the co...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملIterative methods for finding nearest common fixed points of a countable family of quasi-Lipschitzian mappings
We prove a strong convergence result for a sequence generated by Halpern's type iteration for approximating a common fixed point of a countable family of quasi-Lipschitzian mappings in a real Hilbert space. Consequently, we apply our results to the problem of finding a common fixed point of asymptotically nonexpansive mappings, an equilibrium problem, and a variational inequality problem for co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Analysis
سال: 2023
ISSN: ['1648-3510', '1392-6292']
DOI: https://doi.org/10.3846/mma.2023.14858